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APPENDIX A

DERIVATION: DETECTOR-I

Let ya, ua, va, and αa denote the concatenation of the

observed accelerometer signal vector, direction of the ac-

celerometer vector without the gravity vector, direction of the

gravity vector, and magnitude of the accelerometer vector,

respectively. Then,

ya = [(ya
k)

T , . . . , (ya
k+N−1)

T ]T ∈ R
3N×1,

ua = [(ua
k)

T , . . . , (ua
k+N−1)

T ]T ∈ R
3N×1,

va = [(va
k)

T , . . . , (va
k+N−1)

T ]T ∈ R
3N×1,

αa = [αa
k, . . . , α

a
k+N−1]

T ∈ R
N×1.

Under H0, the conditional probability density function of ya,

denoted as f0 (y
a|αa,ua,va) factors as

f0 (y
a|αa,ua,va) =

∏

k∈ΩN

N (αa
ku

a
k + gva

k, σ
2
aI3)

Under H1,2, the conditional probability density function of y,

denoted as f1,2 (y|αa,ua,va) factors as

f1,2 (y
a|αa,ua,va) =

∏

k∈ΩN

N (αa
ku

a + gva, σ2
aI3)

The GLRT based detector replaces the unknown parame-

ters with their maximum likelihood estimates (MLEs). Let

L0(α
a,ua,va|ya) and L1,2(α

a,ua,va|ya) denote the log-

likelihood of the probability distribution functions under H0

and H1,2, respectively. If LD1(y
a) is the likelihood ratio, and

α̂a, ûa, and v̂a, are the maximum likelihood estimates of the

unknown parameters, then the GLRT based detector can be

written as

lnLD1(y
a) = max

αa,ua,va
L0(α

a,ua,va|ya)

− max
αa,ua,va

L1,2(α
a,ua,va|ya)

H0

≷
H1,2

ln γD1 .
(A.1)

The loglikelihood function, L0(α
a,ua,va|ya), under the hy-

pothesis H0, is

L0(α
a,ua,va|ya) = c−

∑

k∈ΩN

[

1

2σ2
a

‖ya
k − αa

ku
a
k − gva

k‖
2

]

,

where c is the normalizing constant. However, the parameters

αa
k, ua

k, and va
k that define the accelerometer signal are

unknown. Hence, the maximum of the L0(α
a,ua,va|ya) is,

max
αa,ua,va

L0(α
a,ua,va|ya) = c. (A.2)

The loglikelihood function, L1,2(α
a,ua,va|y), under the hy-

pothesis H1,2 is given as:

L1,2(α
a,ua,va|ya) = c−

∑

k∈ΩN

[

1

2σ2
a

‖ya
k − αa

ku
a − gva‖2

]

.

(A.3)

Let α̂a
k be the MLE of αa

k that minimizes (A.3). Taking the

partial derivative with respect to αa
k and equating it to zero,

we get

α̂a
k =

(ua)T (ya
k − gva)

‖ua‖2
= (ua)T (ya

k − gva). (A.4)

Substituting (A.4) in (A.3) gives

L1,2(α̂
a,ua,va|ya) = c−

1

2σ2
a

∑

k∈ΩN

∥

∥ya
k − (ua)T (ya

k − gva)− gva
∥

∥

2
. (A.5)

Maximizing (A.5) is equivalent solving the following mini-

mization problem:

min
ua,va

∑

k∈ΩN

‖ya
k − gva‖2P⊥

u
a
, (A.6)

where P⊥
ua = I −ua(ua)T . Note that P⊥

ua is idempotent and

symmetric, which makes it an orthogonal projection matrix.

The weighted optimization problem in (A.6) is bi-quadratic,

i.e., it is quadratic with respect to both ua and va. Further,

the optimization problem in (A.6) does not have a closed form

expression. Here, we use alternative minimization technique

to solve (A.6). In alternative minimization, one of the two

variables ua and va is fixed, and minimizing the function with

respect to the other variable is of low-complexity and high

stability. We begin solving the optimization problem by first

fixing va in (A.6). The minimization problem is formulated

as

min
ua

∑

k∈ΩN

{

‖ya
k − gva‖2 − (ya

k − gva)Tua(ua)T (ya
k − gva)

}

= max
ua

{

(ua)T
∑

k∈ΩN

[

(ya
k − gva)(ya

k − gva)T
]

ua

}

. (A.7)

Let Ga =
∑

k∈ΩN

[

(ya
k − gva)(ya

k − gva)T
]

. The matrix

Ga is positive definite and symmetric. Let ûa denote the

eigenvector corresponding to the maximum eigenvalue of

Ga. Equation (A.7) is maximized when ua is equal to the

eigenvector corresponding to the maximum eigenvalue of Ga.

For any symmetric and positive semi-definite matrix, Ga, the

maximum eigenvector represents the direction of the semi-

major axis, and its eigenvalue represents the length of the

semi-major axis. Clearly, the eigenvector corresponding to

the maximum eigenvalue of the outer product term in (A.7)

captures the direction of the trembling because it subtracts the

constant magnitude and direction representing the gravitational

force from the accelerometer readings, and computes the outer

product. If λmax(·) denotes the the maximum eigenvalue and

ũa denotes the optimal value of ua, then

ũa = eigenvector corresponding to λmax(G
a). (A.8)
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Next, we fix ua in (A.6) and minimize the objective function

with respect to va. The minimization problem is formulated

as

min
va

∑

k∈ΩN

‖ya
k − gva‖2P⊥

u
a
. (A.9)

Taking the partial derivative of (A.9) with respect to va and

equating to zero we get

−2g
∑

k∈ΩN

P⊥
ua(ya

k − gva) = 0. (A.10)

If Pua represents the projection matrix that is orthogonal

to P⊥
ua , then based on the orthogonality of projection ma-

trices, we get
∑

k∈ΩN
(ya

k − gva) ∈ Pua . This implies that
∑

k∈ΩN
(ya

k − gva) = ηua, where η > 0 is the magnitude of

the unit vector in the direction of ua. The choice of η > 0 can

be arbitrary since we are only concerned with the direction of

the unit vector va. Here, we choose η = 1. Therefore, we get
∑

k∈ΩN

(ya
k − gva) = ua. (A.11)

Solving for va and ignoring the scale parameter, we get

va =
1

N

∑

k∈ΩN

(ya
k − ua) = (ȳa

k − ūa). (A.12)

In (A.12), the trembling axis is subtracted from every sample

of the accelerometer to obtain the direction of the gravitational

vector. Let ṽa denote the unit norm vector in the direction of

va. In Algorithm 1, we summarize the steps of the alternat-

ing minimization approach to find the MLE of ua and va.

Substituting ûa and v̂a in (A.5), we get

Algorithm 1 Alternating Minimization

Initialize: i = 0, C(0) = 0, ǫ, and I
Initialize: va

(0) = ȳa
k/ ‖ȳ

a
k‖, where ȳa

k = (1/N)
∑

k∈ΩN
ya
k

1: while (i ≤ I) and (|C(i) − C(i−1)| < ǫ) do

2: Ga
(i) ←

∑

k∈ΩN

[

(ya
k − gva

(i−1))(y
a
k − gva

(i−1))
T
]

3: ũa
(i) ← eigenvector corresponding to λmax(G

a
(i))

4: (ȳa
k − ūa

(i)) ←
1
N

∑

k∈ΩN
(ya

k − ua
(i))

5: ṽa
(i) ← (ȳa

k − ūa
(i))/

∥

∥

∥
ȳa
k − ūa

(i)

∥

∥

∥

6: C(i) ←
∑

k∈ΩN
(ya

k − gṽa
(i))

TP⊥
ũa

(i)
(ya

k − gṽa
(i))

7: i ← i+ 1
8: end while

9: return ûa = ũa
(i) and v̂a = ṽa

(i)

L1,2(α̂
a, ûa, v̂a|ya) = c−

1

2σ2
a

∑

k∈ΩN

‖ya
k − gv̂a‖2P⊥

û
a
. (A.13)

Substituting (A.2) and (A.13) in (A.1), we get

lnLD1(y
a
k) =

1

2σ2
a

∑

k∈ΩN

‖ya
k − gv̂a‖2P⊥

û
a
. (A.14)

The test statistic, TD1(y
a) = (2/N) lnLD1(y

a), is given as

TD1(y
a) =

1

N

∑

k∈ΩN

{

1

σ2
a

‖ya
k − gv̂a‖2P⊥

û
a

}

H1,2

< γ′
D1

, (A.15)

where γ′
D1

= (2/N) ln γD1 .

APPENDIX B

DERIVATION: DETECTOR-II

Let yω, uω, and βω denote the concatenation of the

observed gyroscope signal vector, direction of the gyroscope

vector, and magnitude of the gyroscope vector, respectively.

Then,

yω = [(yω

k )T , . . . , (yω

k+N−1)
T ]T ∈ R

3N×1,

uω = [(uω

k )T , . . . , (uω

k+N−1)
T ]T ∈ R

3N×1,

βω = [βω

k , . . . , βω

k+N−1]
T ∈ R

N×1.

where sωk = βω

k uω

k , βω

k is the magnitude of the angular

velocity vector, and uω

k is a unit vector in the direction of

the angular velocity vector. Let y = [(ya)T , (yω)T ]T denote

the concatenation of the accelerometer and gyrocope signal.

Under H1, the conditional probability density function of y,

denoted as f1 (y|va) factors as

f1 (y|v
a) =

∏

k∈ΩN

N (gva, σ2
aI3)×N (0, σ2

ω
I3).

Under H2, the conditional probability density function of y,

denoted as f2 (y|αa,ua,va,βω,uω) factors as

f2 (y|α
a,ua,va,βω,uω) =

∏

k∈ΩN

N (αa
ku

a + gva, σ2
aI3)

×N (βk
ω
uω

k , σ2
ω
I3).

Let L2(α
a,ua,va,βω,uω|y) and L1(v

a|y) denote the log-

likelihood of the probability distribution functions under H2

and H1, respectively. Let LD2(y) denote the likelihood ratio,

and α̂a, ûa, v̂a, β̂a, and ûω are the maximum likelihood

estimates of the unknown parameters, then the GLRT based

detector can be written as

lnLD2(y) = max
αa,ua,va,βω,uω

L2(α
a,ua,va,βω,uω|y)

−max
va

L1(v
a|y)

H2

≷
H1

ln γD2 . (B.1)

The loglikelihood function, L2(α
a,ua,va,βω,uω|y), under

the hypothesis H2, is

L2(α
a,ua,va,βω,uω|y) = c′−

∑

k∈ΩN

[

1

2σ2
a

‖ya
k − αa

ku
a − gva‖2 +

1

2σ2
ω

‖yω

k − βω

k uω

k ‖
2

]

.

where c′ is a normalizing constant. The minimization of the

third term with respect to αa
k, ua, and va follows the same

steps as in Appendix A. In the fourth term, the parameters,

βω

k and uω

k , that describe the gyroscope vector are unknown

and goes to the minimum value when the norm in the fourth

term of (B.1) goes to zero. Hence, the maximum of the

L2(α
a,ua,va,βω,uω|y) is,

max
αa,ua,va,βω,uω

L2(α
a,ua,va,βω,uω|y)

= c′ −
1

2σ2
a

∑

k∈ΩN

‖ya
k − gv̂a‖2P⊥

û
a
. (B.2)
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The loglikelihood function, L1(v
a|y), under the hypothesis

H1, is

L1(v
a|y) = c′ −

∑

k∈ΩN

[

1

2σ2
a

‖ya
k − gva‖2 +

1

2σ2
ω

‖yω

k ‖
2

]

.

If v̂a represents the maximum likelihood estimate of va, then,

v̂a =
ȳa

‖ȳa‖
, where ȳa =

1

N

∑

k∈ΩN

ya
k. (B.3)

Hence, the maximum of L1(v
a|y) is given as

max
va

L1(v
a|y) = c′

−
∑

k∈ΩN

[

1

2σ2
a

∥

∥

∥

∥

ya
k − g

ȳa

‖ȳa‖

∥

∥

∥

∥

2

+
1

2σ2
ω

‖yω

k ‖
2

]

. (B.4)

Substituting (B.2) and (B.4) into (B.1), we get

lnLD2(y) =
∑

k∈ΩN

[

1

2σ2
a

∥

∥

∥

∥

ya
k − g

ȳa

‖ȳa‖

∥

∥

∥

∥

2

−
1

2σ2
a

‖ya
k − gv̂a‖2P⊥

û
a
+

1

2σ2
ω

‖yω

k ‖
2

]

. (B.5)

If loglikelihood ratio is denoted as LD2(y), then the test

statistic, TD2(y) = (2/N) lnLD2(y), is given as

TD2(y) =
1

N

∑

k∈ΩN

{

1

σ2
ω

‖yω

k ‖
2

+
1

σa
2

[

∥

∥

∥

∥

ya
k − g

ȳa

‖ȳa‖

∥

∥

∥

∥

2

− ‖ya
k − gv̂a‖2P⊥

û
a

]}

H1

<γ′
D2

,

(B.6)

where γ′
D2

= (2/N) ln γD2 .

APPENDIX C

DERIVATION: POINT-PROCESS FILTER

In this section, we derive the stochastic state point process

filter when the observation model follows a binomial distri-

bution. The derivation follows similar steps to those stated

in [52]. We approximate the posterior distribution in (12) to

a Gaussian distribution. Under this approximation, the mean

and variance of the one-step predication density in (13) are

computed from the posterior density in the previous time

interval as

θk|k−1 = Fkθk−1|k−1,

Pk|k−1 = FkPk−1|k−1F
T
k +Qk.

The posterior distribution in the time interval ((k − 1)∆, k∆]
is approximated as a Gaussian distribution with parame-

ters θk|k and Pk|k as the mean and variance, respectively.

Let L(θk) denote the loglikelihood of the posterior dis-

tribution without the normalizing constant, i.e., L(θk) =

ln (P (bk|θk,Hk)P (θk|Hk)). The second order expansion of

the logarithm about a point θ̂k gives

L(θk) ≈ L(θ̂k) + L′(θ̂k)(θk − θ̂k)

+
1

2
(θk − θ̂k)

TL′′(θ̂k)(θk − θ̂k)
(C.1)

= c′′ +
1

2

[

θk −
{

θ̂k − [L′′(θ̂k)]
−1L′(θ̂k)

}]T

×

L′′(θ̂k)
[

θk −
{

θ̂k − [L′′(θ̂k)]
−1L′(θ̂k)

}]

.
(C.2)

The posterior is approximated as a Gaussian, distributed with

θk|k and Pk|k as the mean and variance, respectively, and is

given as

θk|k = θ̂k − [L′′(θ̂k)]
−1L′(θ̂k)

Pk|k = −[L′′(θ̂k)]
−1.

(C.3)

By evaluating (C.3) at θ̂k = θk|k−1, we get the posterior

state equations. The first partial derivative of the loglikelihood

function of the posterior distribution is given as:

L′(θk) =
∂

∂θk

[

ln

(

B

bk

)

+ bk ln pk + (B − bk) ln(1− pk)

−
1

2
(θk − θk|k−1)

T (Pk|k−1)
−1(θk − θk|k−1)

]

=

[

bk
pk

∂pk
∂θk

+
B − bk
1− pk

∂(1− pk)

∂θk

]

− (Pk|k−1)
−1(θk − θk|k−1).

(C.4)

From the definition of the pk, which represents a sigmoid

function, we obtain the following identities:

1

pk

∂pk
∂θk

= (1 − pk)
∂λk(θk)

∂θk

(C.5)

1

1− pk

∂(1− pk)

∂θk

= −pk
∂λk(θk)

∂θk

. (C.6)

Substituting (C.5) and (C.6) into (C.4) we get

L′(θk) = (bk −Bpk)
∂λk(θk)

∂θk

− (Pk|k−1)
−1(θk − θk|k−1).

(C.7)

Taking the second derivative of (C.7), we get

L′′(θk) = −(Pk|k−1)
−1 + (bk −Bpk)

∂2λk(θk)

∂θk∂θT
k

−
∂λk(θk)

∂θk

Bpk(1− pk)
∂λk(θk)

∂θk

T
(C.8)

Therefore, substituting the expressions of the first and second

partial derivatives of the loglikelihood function in (C.7) and

(C.8) into (C.3), and evaluating at θk = θk|k−1, we get

θk|k = θk|k−1 + Pk|k

[

(bk −Bpk)
∂λk(θk)

∂θk

]

θk|k−1

,

(Pk|k)
−1 = (Pk|k−1)

−1 +

[

(Bpk − bk)
∂2λk(θk)

∂θk∂θT
k

+Bpk(1 − pk)
∂λk(θk)

∂θk

∂λk(θk)

∂θk

T
]

θk|k−1

.

The analysis of the convergence of the point-process filter is

presented in [53].



4

APPENDIX D

SYSTEM PARAMETERS: DETECTOR-I

Under H1,2, the distribution of the test statistic in (4)

follows a chi-square distribution when ûa and v̂a are estimated

accurately. Each term in (7) follows a χ2
1 distribution because

rank(P⊥
ûa) = 1 and P⊥

ûa is an idempotent matrix. The test

statistic in (7) represents the sum of independent chi-square

distributions with ν = 1 degrees of freedom. Hence, (7) fol-

lows χ2
N distribution. The exact detection performance is given

by PFA = Qχ2
N
(γ′

D1
), where γ′

D1
is the detection threshold

of Detector-I for a given probability of false alarm, and Qχ2
N

is the right-tail probability for a chi-squared distribution with

N degrees of freedom.

To obtain the threshold γ′
D1

, we consider 5 second IMU data

for six different PD participants (TT004–BLOCK, TT006–

NARROW, TT013–NARROW, TT015–NARROW, TT021–

BLOCK, and TT027–BLOCK). The IMU data consists of

either a specific type of FOG pattern (turning freeze for

TT004–BLOCK and TT013–NARROW, initiation freeze for

TT021–BLOCK and TT027–BLOCK) or no specific FOG

pattern. ZVEI, FOG intervals, and other gait patterns are

identified in the video and marked as ZVEI (video), FOG

(video), and MOVE (video) respectively. The synchronization

between the video and IMU data was done manually. We

use the definitions of TPR and FAR in (15) to evaluate

the performance of the Detector-I across different values of

threshold γ′
D1

, using the ZVEI (video) and FOG (video) region

as the reference. In Fig. 1, we plot the average value of TPR
and 1 − FAR obtained across the six datasets. We observe

that, as the Detector-I threshold increases, the average value

of TPR increases because Detector-I includes both TREI and

ZVEI. However, the average value of 1 − FAR decreases

with the increase in the threshold because gait patterns that

are modeled as neither ZVEI nor TREI, but contain similar

energy information are also identified. Further, in Fig. 1, we

do not observe a significant improvement in the average value

of TPR across different window lengths, and increasing the

window length only leads to increase in the computational load

on the microprocessor. Considering these factors, we choose

γ′
D1

= 34.39 for N = 100 because the average value of TPR
curve shows minor improvement in performance on increasing

the threshold beyond 34.39.

We use the same illustrative example as in Section VII

but with an overlay of the ZVEI, FOG interval, and other

gait patterns observed in the video data. In Fig. 2, the gray

background region indicates FOG (video), blue background

region indicates ZVEI (video), and yellow background region

indicates other gait patterns denoted as MOVE (video). We

choose the standard deviation of accelerometer σa = 1.0.

Note that the standard deviation of the accelerometer only

scales the test statistic in (4), and can be set to any positive

value. In Fig. 2c, we plot the output of the detector for the

test statistic in (4). The IMU region detected by the Detector-

I includes ZVEI (video) and significant region of the FOG

(video) interval. However, it also includes some gait patterns

that are not associated with FOG.

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

TPR: N=100
TPR: N=200
1-FAR: N=100
1-FAR: N=200

Fig. 1: Average value of TPR and 1 − FAR curves for different values of
Detector-I threshold γ′

D1
.
FOG (Video) ZVEI (Video) MOVE (Video)

(a) Three axis accelerometer signal

(b) Three axis gyroscope signal

(c) Output of Detector-I (ZVEI/TREI)

Fig. 2: Detector-I: Detected ZVEI or TREI with an overlay of the video data
for TT004–BLOCK task.

APPENDIX E

SYSTEM PARAMETERS: DETECTOR-II

Under H1, i.e., when the foot is stationary, the distribution

of the test statistic in (7) again follows a chi-square distribution

when ûa and v̂a are estimated accurately. The difference

between the second and third terms in (7) is approximately

equal to zero, as each term indicates the energy due to the

error measurements. As the test statistic in (7) is the sum

of independent chi-squared distributions, each with ν = 1,
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the expression of the test statistic under H1 follows a χ2
N

distribution. The exact detection performance is given by

PFA = Qχ2
N
(γ′

D2
), where γ′

D2
is the detection threshold of

Detector-II for a given probability of false alarm.

(a) TPR: N = 100. (b) 1− FAR: N = 100.

(c) TPR: N = 200. (d) 1− FAR: N = 200.

Fig. 3: Sensitivity of gyroscope: Image plots of average value of TPR and 1−
FAR for ZVEI across different values of Detector-II threshold and standard
deviation of the gyroscope.

The sensitivity of the gyroscope is characterized σω as it

scales the test statistic in (7). To determine the sensitivity of the

gyroscope signal, we plot the average values of TPR and 1−
FAR across different values of threshold γ′

D2
and σω/σa with

σa = 1.0. We use the same datasets as seen in the previous

subsection. Since the goal of the Detector-II is to distinguish

ZVEI from TREI, we compute the average values of TPR and

1−FAR based on (15), with ZVEI (video) as the reference. We

fix N = 100, σa = 1.0, and γ′
D1

= 34.39 for Detector-I, and

observe the performance of the second detector. As the value

of σω goes to zero, the test statistic tends towards infinity

and no ZVEI are detected for finite values of the Detector-II

threshold. Therefore, for small values of σω, the average value

of TPR is close to zero, as observed in the lower half of Fig.

3a. Similarly, the lower half of Fig. 3b demonstrates no ZVEI

for small values of σω, or equivalently, 1 − FAR is one. As

the sensitivity of the gyroscope and threshold γ′
D2

increase,

the average value of TPR increases and 1− FAR decreases.

However, for a fixed large value of σω/σa and beyond certain

threshold (around γ′
D2

= 10.0 in Fig. 3a), the TPR curves

begin to saturate. This saturation behavior is explained by the

fact that the maximum region that the Detector-II can detect

is bounded by the ZVEI/TREI detected by the Detector-I. We

represent the regions with high average TPR (95− 99%) and

1−FAR (90−95%) values with solid-line and dashed-line plot,

respectively. In particular, we set σω/σa = 0.8 for N = 100
which lies in 95 − 99% region of the average TPR plot and

90− 95% region of the average 1− FAR plot. However, due

to the saturation behavior of the average value of TPR curve,

the threshold γ′
D2

can take many finite values.

To determine the optimal threshold γ′
D2

, we compute the

performance of the foot-mounted inertial navigation system
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Fig. 4: Performance of the foot-mounted inertial navigation system plot across
different value of the threshold.

for the calibration task. In the calibration task, the participant

was asked to walk forward along a full 6 meter straight path.

On reaching the end, the participant made a 180◦ turn and

returned to the starting point. Each calibration task contains

two datasets where the participant was asked to follow the

same trajectory twice. The starting point and ending of the

trajectory are the same and the total average distance traveled

varied between 13.0-13.5 meters because the participants took

an extra step or two beyond the physically marked end-point

to complete the first turn. We compute the ratio of the root

mean square (RMS) of the position error and distance traveled

as follows [54]

10 log10

(

100
RMS position error

Distance traveled

)

(E.1)

where the root mean square of the position error is defined

as the distance between the starting and ending point of the

trajectory during the calibration task, and the distance traveled

FOG (Video) ZVEI (Video) MOVE (Video)

Fig. 5: State diagram of Detector-I and Detector-II for PID TT004–BLOCK
task with an overlay of the video data.
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Fig. 6: PID TT027–BLOCK. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with σs = 0.29. (c) and (d) Yaw angle plot with an overlay of
DL, MDL, and FAL. FOG region was marked using video data the following video commentary: Froze when stood up from chair to walk to block. Froze
when turning to go back to cones after second trial. Froze during turn in the fourth, fifth, and sixth trials. Questionable left foot freeze in turn for seventh
and eighth trials. Froze after trials over while walking away.

Fig. 7: PID TT027–BACK. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with σs = 0.29. (c) and (d) Yaw angle plot with an overlay
of DL, MDL, and FAL. FOG region marked using the following video commentary: Froze turning after first backward trial. Froze turning after second
backward trial. Froze at the end of third backward trial into a turn.

Fig. 8: PID TT027–EIGHT. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with σs = 0.29. (c) and (d) Yaw angle plot with an overlay of
DL, MDL, and FAL. FOG region was marked using the following video commentary: Gait initiation freeze when standing up to start figure EIGHT trial,
and first and second figure EIGHT trials. Froze during turn after second figure EIGHT trial. Froze when lining up for third and fourth figure EIGHT trials.
The first two FOG events were not recorded in the IMU data.

Fig. 9: PID TT027–NARROW. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with σs = 0.29. (c) and (d) Yaw angle plot with an overlay
of DL, MDL, and FAL. FOG region was marked using the following video commentary: Froze when standing up and initiating gait to measure NARROW
chair width. Froze during turn after first and third NARROW trials. Froze before side-step to line up for third NARROW trial. The first FOG event was not
recorded in the IMU data.
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Fig. 10: PID TT027–TURN. (a) Freeze-Index plot with FI-threshold set to 6.0. (b) pFOG plot with σs = 0.29. (c) and (d) Yaw angle plot with an overlay
of DL, MDL, and FAL. FOG region was marked using the following video commentary: Froze during first turn, twice during second turn, and third TURN
trials. Froze turning wrong way in fourth TURN trial and then froze again turning correct way. Froze in the fifth and sixth TURN trials.

is defined as the sum of the distances between the position

coordinates at the edges of the ZVEI during OFF state. When

the threshold of Detector-II is set to a low value, no ZVEI

are observed. In this case, the total distance measured by

the system sums to zero, and the performance of the inertial

navigation system in (E.1) is not defined, as shown in the

left half of Fig. 4. When the threshold is set to a very

high value, zero-velocity update is always ON and the ZVEI

detected by Detector-II is equal to the ZVEI/TREI identified

by the Detector-I. Due to this, the total distance is a non-zero

value close to zero and the curve representing equation (E.1)

saturates. The optimal performance of the inertial navigation

system is obtained at the threshold when the curve in (E.1)

attains the minimum value and the estimated total average

distance is within an error-bound region of the true average

distance. In Fig. 4, for N = 100, (E.1) attains a minimum at

γ′
D2

= 2.00 and the average distance traveled is equal to 13.5
meters, which lies within the error-bound region.

In Fig. 5, we explain the behavior of the curves in Fig. 3

and Fig. 4 for the same illustrative example seen in Section

VII. We set the system parameters N = 100, σa = 1.00,

σω = 0.8, γ′
D1

= 34.39, and γ′
D2

= 2.00. The red curve

indicates the output of Detector-I based on the test statistic in

(4) and threshold γ′
D1

. The goal of Detector-II is to determine

the ZVEI when Detector-I is ON. The blue curve represents the

output of Detector-II for the test statistic in (7) and threshold

γ′
D2

. In Fig. 5, we observe that there is a significant overlap

between the ZVEI identified by the Detector-II and ZVEI

(video) indicated with blue background. In addition, the FOG

region detected in the video contains both ZVEI and TREI,

because the turn freeze included both trembling and short

stride lengths. However, Detector-II also identifies updates

which contains similar energy information as TREI and are

not associated with FOG.

APPENDIX F

SUMMARY: PID TT027

In this section, we demonstrate the performance of the FI

[19] and pFOG method for PID TT027, who demonstrated

the greatest number of FOG events (24 in total). As the list

of balance assessment tasks involved in place and sharp 180◦

turns, we overlay the DL, MDL, and FAL region detected on

the yaw angle plot provided by the inertial navigation system.
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Fig. 11: Summary of TT027. (a) TPR, (b) FAR, and (c) FOG events detected.

The sum of the region identified as DL and MDL represents

the FOG region detected in the video data.

For PID TT027, we choose the BLOCK task to obtain

the FI-threshold and kernel parameter because the participant

demonstrated the highest number of FOG events (equal to 8) in

this task. We set the FI-threshold to 6.0 and the kernel param-

eter σs = 0.29 such that the number of FOG events detected

is maximizedq. In Fig. 6-10, we plot the yaw angle of the

motion of the left foot with an overlay of the DL, MDL, and

FAL regions obtained using the video reference system. We

notice that the FI-threshold obtained using the BLOCK task

demonstrates high FAR in the remaining tasks. However, the

proposed pFOG method demonstrates an improved accuracy

with low FAR.

In Fig. 11, we summarize the results obtained for PID

TT027. The FI-method detected 21/24 (or equivalently 87.5%
accuracy) FOG events, whereas the pFOG method detected

22/24 (or equivalently 91.66% accuracy) FOG events. The

average values of TPR for FI and pFOG method were 0.67
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TABLE 1: Number of FOG events detected for different participants across the gait tasks.

PID
PARAMETER BACK BLOCK EIGHT NARROW TURN TOTAL
FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG FI pFOG

TT003 6.56 0.30 (0/0) (0/0) (0/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (0/1) (0/1)

TT004 6.56 0.30 (0/2) (1/2) (0/6) (4/6) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (0/8) (5/8)

TT005 6.56 0.30 (0/1) (1/1) (0/0) (0/0) (0/0) (0/0) (0/1) (1/1) (0/0) (0/0) (0/2) (2/2)

TT007 6.56 0.30 (8/8) (4/8) (0/0) (0/0) (0/1) (1/1) (1/1) (0/1) (0/0) (0/0) (9/10) (5/10)

TT013 6.56 0.30 (0/0) (0/0) (1/3) (2/3) (0/0) (0/0) (1/2) (0/2) (0/0) (0/0) (2/5) (2/5)

TT017 6.56 0.30 (0/0) (0/0) (1/1) (0/1) (0/0) (0/0) (0/0) (0/0) (0/0) (0/0) (1/1) (0/1)

TT021 6.56 0.30 (1/1) (1/1) (1/3) (3/3) (0/2) (1/2) (0/0) (0/0) (0/1) (1/1) (2/7) (6/7)

TT027 6.56 0.30 (3/3) (3/3) (5/8) (7/8) (4/4) (3/4) (2/3) (3/3) (5/6) (6/6) (19/24) (22/24)

TOTAL 6.56 (avg) 0.30 (avg) (12/15) (10/15) (8/22) (16/22) (4/7) (5/7) (4/7) (4/7) (5/7) (7/7) (33/58) (42/58)

Fig. 12: PID TT007–BACK. (a) Freeze-Index plot with FI-threshold set to 6.56. (b) pFOG plot with σs = 0.30. (c) and (d) Yaw angle plot with an overlay
of DL, MDL, and FAL. FOG region marked using the following video commentary: Festination backwards into freeze in the middle of first trial. Festination
backwards into freeze at the end of the second trial. Six instances of festination backwards into freeze in the third trial.

and 0.65, respectively. However, our method demonstrates a

lower average FAR of 0.09 when compared with the existing

method which gives an average FAR of 0.35, indicating a

four-fold reduction in the false alarm rate using the proposed

method.

APPENDIX G

EXPERIMENTAL EVALUATION: FIXED

THRESHOLDS

In Table 1, we analyzed the accuracy of the existing and

proposed method across different datasets for a fixed value

of FI-threshold and σs. These fixed values are obtained by

taking the average of the participant-specific FI-threshold and

participant-specific kernel parameter in Table III of the original

manuscript. In our analysis, we fix the FI-threshold to 6.56

and σs = 0.30. Overall, the pFOG method obtained an

accuracy of 72.41%, i.e., 42/58 FOG events were detected

using a fixed participant-specific kernel parameter (see Table

1). The FI method obtained an accuracy of 56.68%, i.e.,

33/58 FOG events were detected using a fixed FI-threshold.

In contrast, when the participant-specific parameters were

manually adjusted, we obtained an accuracy of 70.68% and

81.03% for the FI method and pFOG method, respectively

(see Table III of the original manuscript).

In Table 2, we report the performance of the FI method

and proposed approach for a fixed value of the FI-threshold

and participant-specific tunable parameter, respectively, across

different types of freezing of gait. We notice that the proposed

method performs better than the existing approach in detecting

all types of freezing, except festination. However, for this

particular type of freezing of gait, the false-alarm length

detected in the FI method is significantly higher than the

proposed approach. In Fig. 12, we overlay the detection length

(DL), missed detection length (MDL), and false alarm length

(FAL) regions detected on the yaw angle plot obtained by

the foot-mounted inertial navigation system for PID TT007–

BACK trial (the only participant who demonstrated festinating

gait). The definitions of DL, MDL, and FAL can be found in

section VI-B of the main manuscript. We notice that the FI

method detects large FAL (represented with blue background)

for a fixed value of FI-threshold.

TABLE 2: Detection performance for different types of FOG events..

Event type (No. of events) (not tuned) FI (not tuned) pFOG

Turn Freeze (38) 47.36% (18) 76.31% (29)

Initiation/Gait Freeze (12) 58.33% (7) 75.00% (9)

Festination with Freeze (8) 100.00% (8) 50.00% (4)

Overall (58) 56.68% (33) 72.41% (42)


